	1011			11111		Ш
FHANK	Ш	MA	Ш	ШЯ	ш	Ш

Reg. No. :												
------------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 90190

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019
Fifth Semester

Medical Electronics

EC 8553 - DISCRETE-TIME SIGNAL PROCESSING

(Common to Biomedical Engineering/Computer and Communication Engineering/ Electronics and Communication Engineering/Electronics and Telecommunication Engineering)

(Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Determine the IDFT of $Y(K) = \{1, 0, 1, 0\}$.
- 2. Draw the 4-point radix 2 DIT-FFT and 4-point radix 2 DIF-FFT butterfly structures for FFT.
- 3. Summarize the procedure to design digital filters from analog filters. Recall in this context what is meant by backward difference.
- 4. What is bilinear transformation? List the properties of bilinear transformation.
- 5. Obtain the direct form realization of the filter $H(Z) = \frac{1}{2} + \frac{1}{4}z^{-1} + \frac{1}{4}z^{-2} + \frac{1}{2}z^{-3}$ with minimum number of multipliers.
- 6. How to design an FIR filter using frequency sampling method? For what type of filters frequency sampling method is suitable?
- 7. Define input quantization error and product quantization error.

- 8. Interpret how the digital filter is affected by quantization of filter coefficients?
- 9. Distinguish between fixed point and floating point arithmetic.
- 10. List the applications of Digital Signal Processing.

$$PART - B (5 \times 13 = 65 Marks)$$

- 11. a) i) Compute the DFT of the sequence $x(n) = \{0, 1, 2, 1\}$. Sketch the magnitude and phase spectrum. (7)
 - ii) For the given $x_1(n)$, $x_2(n)$ and N, compute the circular convolution of $x_1(n)$ and $x_2(n)$. (6)
 - 1) $x_1(n) = \delta(n) + \delta(n-1) + \delta(n-2), N = 3$ $x_2(n) = 2 \delta(n) - \delta(n-1) + 2 \delta(n-2)$
 - 2) $x_1(n) = \delta(n) + \delta(n-1) + \delta(n-2) \delta(n-3), N = 5$ $x_2(n) = \delta(n) - \delta(n-2) + \delta(n-4).$ (OR)
 - b) i) Perform Linear convolution of the following sequences by overlap-add method.

$$x(n) = \{1, -2, 3, 2, -3, 4, 3, -4\}$$
 and $h(n) = \{1, 2, -1\}.$ (7)

- ii) Compute the 8 point DFT of the sequence $x(n) = \{1, 1, 1, 1, 1, 1, 1, 0\}$ using DIT, FFT algorithm. (6)
- 12. a) For the given specifications $0.9 \le |H(j\Omega) \le 1$, for $0 \le \Omega \le 0.2\pi$ $|H(j\Omega) \le 0.2$, for $0.4\pi \le \Omega \le \pi$

Plot the magnitude response and design an analog Butterworth filter. (13)
(OR)

- b) i) For the analog transfer function $H_a(s) = \frac{2}{(s+1)(s+3)}$. Determine H(z), if T = 1s, using Impulse invariant method. (7)
 - ii) Realize the system with difference equation

$$y(n) = \frac{3}{4}y(n-1) - \frac{1}{8}y(n-2) + x(n) + \frac{1}{3}x(n)$$
 In cascade form. (6)

13. a) Discuss on the frequency response of linear phase FIR filter when the impulse response is symmetrical and N is odd.

(13)

(OR)

b) List the steps in the design of FIR filter using windows. Point out the characteristics of the following window functions.

(13)

- i) Rectangular Window
- ii) Hanning Window
- iii) Hamming Window.
- 14. a) i) A digital system is characterized by the difference equation y(n) = 0.8y(n-1) + x(n). Determine the limit cycle behavior and the dead band of the system with x(n) = 0 and initial condition y(-1) = 10. Assume that the result y(n) is rounded off to the nearest integer. (7)
 - ii) Given $H(Z) = \frac{0.5 + 0.4z^{-1}}{1 0.312z^{-1}}$ is the transfer function of a digital filter.

Find the scaling factor S_0 to avoid overflow in adder 1 of the digital filter shown in fig. 1. (6)

b) Discuss the effect of coefficient quantization on pole locations of the following IIR system, when it is realized in direct form -1.

 $H(Z) = \frac{1}{1 - 0.7z^{-1} + 0.12z^{-2}}$. Assume a word length of 4-bits through truncation. (13)

15. a) Sketch the architecture of a DSP processor and explain its special features that support signal processing applications. (13)

(OR)

- b) i) Explain the concept of circular buffering in a DSP processor. Explain how this is useful in implementation of FIR filters. (7)
 - ii) Comment on the factors that decide the choice of a DSP processor for a system. (6)

 $PART - C \qquad (1 \times 15 = 15 \text{ Marks})$

- 16. a) Given, $H_d(e^{j\omega}) = \begin{cases} e^{-j3\omega}, & -\pi/4 \le \omega \le \pi/4 \\ 0, & \text{otherwise} \end{cases}$. Design a FIR filter using Hamming window with N = 7. (15)
 - b) Propose a DSP based system to process signals in an audio system that includes recording, storage, transmission and reproduction of signals and explain. (15)